Course Catalog

2016-2017 Fall and Spring Department course catalog

 
NOTE: Not all courses are offered every semester or every year. Please refer to your specific program curriculum to see what is offered each semester. Feel free to look here for more information on our courses. 
 
 
 
CBTA 566: PREPAREDNESS, RESPONSE, AND CAPACITY TO CBRNE THREATS (ONLINE)

This course explores on the medical effects and response to a nuclear/radiological, chemical, biological threat attacks. Additionally, the course will include a current analysis of the capacity of the U.S. system to withstand the effects of a major CBRNE attack. It will also evaluate the H1N1 Pandemic Influenza as a case study for preparedness. This course will move from addressing the threats presenting to individuals to threats presenting to communities (local, state, national) based on the potential medical and system outcomes for both. Specificially, it will address both individual medical outcomes and treatment strategies of disease, and larger community, state, and national outcomes and response strategies for an attack.
3 credits, S. Kappler

CBTA 595: Community Resilience (ONLINE) 

The impacts of disasters on a community are not necessarily determined by the scale of a disaster but are significantly influenced by the preparedness of the community. Community resilience is the capacity of groups to withstand, recover from, and respond positively to crisis or adversity. Community resilience is often described as having three properties: resistance, recovery and creativity.

  • Resistance – the degree of disruption that can be accommodated without the community undergoing long-term change. A highly resilient community can withstand considerable disruption before undergoing long-term change.
  • Recovery – the community’s ability to pull through or bounce back to its pre-disaster state. A highly resilient community returns to its pre-disaster state, or moves beyond that, quicker than a less resilient community.
  • Creativity – the community’s ability to build on lessons of a crisis or disaster, to gain an improved level of functioning and increased levels of resilience. A highly resilient community will adapt to its new circumstances and learn from the disaster experience.

This online course is designed to assist graduate students working in the area of social work, community development, and public health to understand and apply concepts of resilience to building the capacity of communities to successfully weather disasters whether naturally occurring or manmade. How do planners measure, foster, organize, evaluate and implement the tools, processes and programs that seek to foster resiliency in urban communities? Particular attention will be paid to the role of community‐level initiatives aimed at educating graduate students to think critically at how a community can prepare for, cope with, and recover from the adverse social, health and community impacts of disasters through the interrelated domains of prevention, preparedness, response and recovery with the end goal of achieving resilience. Emphasis will also be on identifying federal, state, local, private sector and non-governmental agency plans to enhance community resilience for health security threats and describe options for building community resilience.
3 credits, L. Rosenthal, P. Scaglini & J. Stiefel

MICB 501: Social Propagation of Global Infectious Disease (CURRENTLY NOT OFFERED)

This course will examine the hypothesis that the world has become a global system for the propagation of infectious disease. Beginning with an analysis of global trade and the spread of infectious disease, we will carefully study the economic, social and political conditions that have increased both the biological threat of, and human vulnerability to infectious disease throughout the world. In studies of the United States and Brazil, we will focus in detail on how the experience of poverty affects peoples’ sense of risk, particularly for sexually transmitted diseases such as AIDS and cervical cancer. In studies of Haiti, Venezuela, and other countries, we will extend that analysis by examining how social inequality helps structure the global distribution of contracting and receiving treatment for infectious diseases such as tuberculosis, cholera and malaria in the developed and developing world. We will finish the course by examining how countries throughout the world have increased human vulnerability to infectious disease by undermining their public health infrastructures. After completing this course, students should better understand the complexity of global infectious disease as a biological, sociological, economic and political phenomenon. 
2 credits, J. Collmann

MICB 502: Interdisciplinary Global Infectious Diseases (CURRENTLY NOT OFFERED)

This course will present a comprehensive view of the global infectious disease landscape through a series of lectures that will first introduce the student to the biology and pathogenic manifestations of specific infectious agents followed by a corresponding lecture on a relevant health policy or program implementation example by an expert with direct experience in the subject. These presentations will cover “high impact” as well as neglected tropical diseases and potential pandemic agents. This course is designed for graduate and undergraduate students from diverse backgrounds that intend to work in an interdisciplinary environment and will benefit from a thorough understanding of all aspects surrounding global health issues.
3 credits, G. Ostera

MICB 515: BIOLOGICAL THREAT AGENTS & EMERGING INFECTIOUS DISEASES (BOTH ONLINE AND RESIDENT COURSE)

This beginning course will cover the basic principles of microbiology for graduate students with a wide variety of backgrounds who need a basic understanding of microbiology including bacteriology, virology, and immunology. Introductory lectures on these topics will precede a more in-depth review of biological threat agents and emerging infectious diseases. Issues of Public Policy and Advocacy with respect to biohazardous agents will also be addressed. 
3 credits, L. Rosenthal & Staff

MICB 516: Biological & Radiological Safety 

This course will cover the biological safety levels (BSL) for containment working with biological agents - both recombinant DNA and emerging infectious diseases. Radiological safety - will discuss the issues of dirty bombs, containment, and health issues associated with radioactive materials that bioterrorists might employ. 
2 credits, S. Martin & C. Kovats

MICB 517: Bioterrorism (Both Online and Resident Course)

This course explains terrorism in its modern form, and why the use of these weapons is more likely today. In addition, the course presents the major biological and other weapons thought most likely to be used, discusses techniques to use these weapons, and discusses the techniques to prevent and control the effects of these weapons. 
3 credits, W. Daddio

MICB 519: Sociological Perspectives on Biodefense (Both Online and Resident Course)

This course will critically examine political and organizational controversies about recognizing and defending against biological threats to human well being. The first third of the course will study historical case studies of biological threat, including threats from food and infectious diseases such as cholera and the flu. This section of the course will demonstrate how biosurveillance, the systematic identification and acknowledgement of a biothreat, depends upon broad social, economic and political factors as well as its biological characteristics. This section of the course will close with a detailed review of the pandemic influenza plans of the US government. The second third of the course examines the debate about reforming our government bureaucracy responsible for responding to biothreats, including but not limited to terrorists. Why did we not recognize the emerging threat of the 9/11 attacks? What principles should we apply in reforming our intelligence and homeland defense organizations? How should we think of natural biothreats from an intelligence perspective? The course concludes with close examination of sociological perspectives on designing effective organizations for responding to threats including biothreats using the US government's pandemic flu plans as a case study. Why do organizational failures occur even in organizations capable of responding to novel threats and unanticipated events? We will close the course by examining how one society responded to a major biological catastrophe, the explosion of the Chernobyl nuclear plant in Ukraine. By the end of this course, students should gain an appreciation of the fundamentally political character of biodefense. 
3 credits, J. Collmann

MICB 520: Agroterrorism: Animal, Plant & Homeland Defense

This course will cover historical and contemporary aspects of intentional introduction of microbial and chemical agents in the food chain with specific emphasis on animal viruses like foot-and-mouth disease, mad cow, Rift Valley fever, hog cholera, highly pathogenic avian influenza West Nile, and New Castle Disease. Plant pathogens, such as soybean rust will be covered. Moreover animal and plant agent lists will be discussed to include human crossover agents. Discussions relevant to first responders will be detailed.
3 credits, L. Rosenthal &, USDA Faculty

MICB 524: Emerging Diseases: The Past as Prologue

This course will study recent infectious disease outbreaks including Marburg virus in Angola 2005; Nipah virus in Bangladesh 2004, Monkeypox in the USA 2003, SARS in Hong Kong and Toronto 2003, West Nile Virus in the USA 1999-2006, Plague in India 2004, Hantavirus in the USA 1993, and the HIV/AIDS pandemic 1981-2006. Emphasis will be two-fold: (1) the interaction between the infectious disease pathogen and the human immune response, and (2) common public health and political themes in these outbreaks and how they will help prepare for future emerging (entirely novel) or re-emerging diseases (new within a given environment) diseases. Students will participate in a "tabletop exercise" on how to manage an emerging disease outbreak. 
2 credits, R. Katz

MICB 525: Homeland Security (Both Online and Resident Course)

This course will examine threats to the US homeland, how they might evolve over the next ten years, and the consequent implications for science, technology and homeland security. The course will examine the motivations of non-state actors to threaten the US homeland, and how those actors might use technology and exploit vulnerabilities to attack the US. The course will also examine the role of science and technology in countering these threats and securing the homeland, and the competing policy interests that affect decision-making for investments in science and technology. The course will give students insight into the nexus of science, technology, and policy, and the underlying competing interests that must be balanced to optimize the potential of science and technology to benefit and enrich the United States while protecting it.
3 credits, M. Hawkins & Staff

MICB 526: Chemical Threat Agents

The Threat of Chemical Weapons is a survey of chemical weapons issues with an eye toward health-related topics. Students will review the key institutions, individuals, and instruments involved of science and technology (S&T) policy with respect to chemical agents. 
3 credits, C. Woytowicz

MICB 550: Pathogenesis & Therapy of Bioterrorism Related Diseases

Microorganisms and toxins that could be employed by terrorists as biological weapons have been ranked in the order of their potential threat as Category A, B and C agents by the National Institute of Allergy and Infectious Diseases. This course will examine the mechanisms by which the most virulent (Category A) and certain Category B and C agents cause severe illness in humans and laboratory animals and will review current approaches to the treatment of these diseases. Students enrolling for this course should have completed MICB-515 or have an equivalent background in biology and immunology.
2 credits, M. Bray

MICB 551: Seminar in Biohazardous Threat Agents

Individual topics will vary depending on the expertise of each speaker. 
1 credit, L. Rosenthal & Staff

MICB 560: Principles and Applications of Drug Discovery

This is an elective multi-disciplinary course and focuses on various human diseases for which development of therapeutics are needed. In the first part of the course, the course will cover basic principles of medicinal chemistry, strategies and techniques used in structure activity relationship and pharmacore identification. The course will also cover synthesis, selection and optimization of drug-like compounds using a variety of modern techniques such as molecular docking based on known three-dimensional structures of therapeutic targets as well as structure determination of target/ligand complexes by using X-ray crystallography, NMR. and/or proteomics. In the second part of the course, applications of drug discovery to specific human diseases. This part will include development of new antibiotics to combat drug-resistant bacteria, anti-fungal, antivirals (HIV-1, HBV/HCV, Flu, HPV and flaviviruses), and anti-malaria drugs as well as drugs against CNS disorders and human cancers. 
2 credits, B. Korba & R. Padmanabhan

MICB 577: Defense Threat Reduction Initiatives

 This elective course is focused on exploring the various aspects of how the US government, specifically the Department of Defense, works to safeguard America and its allies from weapons of mass destruction (chemical, biological, radiological, nuclear, and high yield explosives) by providing capabilities to reduce, eliminate, and counter the threat, and to mitigate its effects. An initial analysis of the current and potential nuclear/radiological, biological and chemical threat will set the stage; and the medical effects of these weapons will be briefly reviewed. Various threat reduction strategies and their medical consequences including the Chemical Weapons Convention and the Strategic Arms Reduction Treaty will be surveyed. Moreover, elimination efforts such as the Chemical Demilitarization Program will be covered. Public health and medical consequences related to the enormous task of mitigating the effects of a WMD will be covered. The course will consist primarily of lecture/discussion format with readings designed to enhance student knowledge and provoke discussion; and subject matter experts from various government agencies will present their respective roles in this realm.
2 credits, R. Suh & J. Jacocks

MICB 584: Introduction to Microbiology (CURRENTLY NOT OFFERED)

This course will introduce the disciplines of microbiology and immunology through presentation and exploration of several topics of major current interest. Each lecture will begin with a broad introduction to the subject, followed by a discussion of how the topic has been approached experimentally and the impact of recent advances. Potential topics covered include: antigen presentation, natural killer cells, development of antifungal therapeutics, commensal bacteria and the immune system, and host responses to viral infection and viral countermeasures. 
1 credit, J. Casey

MICB 589: ENVIRONMENTAL HEALTH & POLICY 

This course will prepare students in both health sciences and public policy to quickly adapt to this emerging paradigm shift, while cultivating and directing their fresh innovative ideas in areas of environmental health policy. 
2 credit, T. Steen

MICB 590: ANIMAL HEALTH 

This course will provide a comprehensive view of animal health as it relates to the concept of “One Health” for the betterment of an increasingly global society. Through lecture, students will be presented with material related to specific zoonotic diseases, such as Avian Influenza, Rabies, MERS-coV, Nipah, and West Nile, and the lessons learned through the emergence and re-emergence of these diseases in animals. Course participants will also be encouraged to follow mass media current events on relevant subject matter as a means to stimulate discussion. Other topics explored will include: the cultural and socioeconomic factors influencing human-animal interaction, the increasing interface with wild and domestic animals, animals as sentinels of human disease, and the impact of urban agriculture. The breadth of knowledge pertaining to animal health gained in this course should allow the students to apply a sharp analytical insight to very complex “Global One Health” issues.
2 credit, J. Witthoff

MICB 591: ONE HEALTH: US POLICY FOR A GLOBAL CHALLENGE (CURRENTLY NOT OFFERED)

This course analyzes the development of domestic and international policy in the nexus of human, animal and environmental health, in an attempt to better define and understand the evolving concept of “One Health”. The course covers a variety of themes, including global health and food security, multilateral frameworks (including the United Nations and World Health Organization), and U.S. diplomacy and international development. Current U.S. policies and programs surrounding One Health are reviewed;implications for National Security and foreign policy inclusive of global grand challenges in One Health are analyzed. Particular attention is paid to understanding how policy is derived, and the role of both government and non-governmental organizations in the implementation of these policies, recognizing the competing interests of politics, economics and foreign policy, in achieving a comprehensive One Health agenda.
2 credits, J. Rao

MICB 603: Science & Technology in the Global Arena 

This course is an introduction to how science and technology affect foreign affairs, and how international affairs influence science and technology. It is the gateway course required of SFS juniors majoring in science, technology and international affairs (STIA), and College science majors taking the STIA certificate. It may also be taken by undergraduates and graduate students from anywhere in the university without special permission. It has no prerequisites, and is suitable both for the policy generalist and for students with backgrounds in science. The course uses examples drawn from environment, security, nuclear policy, information, communications, energy, homeland defense, health, and manufacturing technology, and explores issues of sustainability, scientific risk and uncertainty, the links of science and technology with economics and geopolitics, scientific advice to governments, and government support to research and innovation. It explores the role of technological innovation in increasing productivity and competitiveness, and in solving critical social problems. 
3 credits, C. Weiss

MICB 606: Public Policy for Scientists

This interdisciplinary course will provide introductory lectures in a variety of fields that pertain to biomedical science policy & advocacy. Lectures will cover relevant federal agencies, prominent science advocacy groups and techniques, principles of health economics, funding of research activities, the interaction of science & industry, as well as some controversial issues in science policy such as biodefense, stem cell research, and climate change. Students will be left with a multi-faceted understanding of the environment that shapes biomedical science policy and the scientists' role in this arena. 
3 credits, R. Calderone & D. McBride

MICB 607: General Medical Microbiology & Immunology (CURRENTLY NOT OFFERED)

The course consists of lectures and laboratories that integrate the basic concepts of microbiology and immunology with the role of microorganisms as pathogenic agents. Major emphasis is placed on bacteria, viruses, fungi and parasites in infectious disease. The clinical applications of immunology are also discussed. (Note that the course is on the Medical School calendar, beginning in late August and ending in mid-February.) Students who wish exposure only to one part of the course (immunology, bacteriology, virology) are encouraged to consider enrolling in one of the three courses existing for this purpose (609, 610, 611, respectively) 
7 credits, R. Cihlar & M. Cole

MICB 608: Fundamentals of Medical Immunology & Microbiology (CURRENTLY NOT OFFERED)

This course introduces the fundamental concepts of Medical Microbiology and Immunology with emphasis on host defense mechanisms and the role of microorganisms in infectious diseases. Lectures will cover basic principles and clinical applications of immunology, bacterial physiology and genetics, and the role of pathogenic bacteria, fungi and viruses in human diseases. 
2 credits, R. Cihlar & M. Cole

MICB 609: Introductory Immunology (CURRENTLY NOT OFFERED)

This course introduces the basic principles of immunology and immunogenetics. The course is offered as the first quarter of MICB-607 and is taught during the months of August and September. It is recommended for students who wish exposure to only the immunology section of that course. Permission of course director is required. 
2 credits, R. Cihlar & M. Cole

MICB 610: Introductory Bacteriology (CURRENTLY NOT OFFERED)

This course introduces the basic principles of bacterial physiology, genetics, and pathogenicity. The course consists of the second quarter of MICB-607 and is taught during the months of October, November, and December. It is intended for students who wish exposure only to the bacteriology section of that course. Permission of course director is required. 
2 credits, Dr. R. Calderone & staff

MICB 611: Introductory Virology (CURRENTLY NOT OFFERED)

This course introduces the basic principles of virology with emphasis on human pathogens. The course consists of the third quarter of MICB-607 and is taught during the months of January, February, and March. It is intended for students who wish exposure to only the virology section of that course. Permission of course director is required. 
2 credits, Cole & staff

MICB 612: Immunology

The course will focus on the cells, organs and molecules of the immune system and how they contribute to discrimination of self from non-self. The paradigm used in the course will be the host response to infectious agents. Hypersensitivity, autoimmunity, graft rejection and tumor immunity will be considered as variations in the basic protective function of the immune system. 
3 credits, M. Cole

MICB 613: Introductory Bacteriology: Laboratory (CURRENTLY NOT OFFERED)

Laboratory section taught concurrently with MICB-610. Lab work includes general methods associated with the culture and identification of medically important bacteria and fungi. Laboratory fee is required of students not enrolled in departmental degree programs.
1 credit, M. Cole

MICB 614: Bacteriology & Mycology

The course will focus on principle human pathogenic bacteria and fungi. The host-pathogen relationship and antimicrobial therapy will be grounded in an understanding of the structure and physiology of medically important prokaryotes and lower eukaryotes. 
3 credits, M. Cole

MICB 619 Biology/Biochemistry of Viruses 

This course will cover the general principles of virology. Topics will include: the effects of viruses on human health and disease; laboratory approaches to studying viruses; virus structure and mechanisms of replication; host responses to virus infection and viral counter-responses; virus engineering - including vaccine development and gene therapy; the role of virus ecology in emerging viral diseases. The focus will be primarily on viruses that affect human health. 
3 credits, J. Casey

MICB 622: Advanced Techniques in Microbiology I

Practical course in the application of modern molecular methods to the study of infectious diseases. Limited to Department of Microbiology and Immunology graduate students; advisor/instructor permission required.
3 to 6 credits, W. Fonzi

MICB 629: Mechanisms of Microbial Pathogenesis

A course designed to explore the varied ways pathogenic bacteria overcome natural host defense, to describe host responses to infection, and to discuss the network of interactions between pathogen and man at the molecular and cellular level.
3 credits, R. Calderone & W. Fonzi

MICB 650: The Human Immune System in Health & Disease (CURRENTLY NOT OFFERED)

At the completion of the course the student will understand how the immune system recognizes foreignness outside and inside the body; the tissue damaging consequences of the immune system when it fails to distinguish between self and non-self and the value of immunological reagents in diagnosis and treatment of disease. 
2 credits, M. Cole

MICB 701: Legal Foundations of the Regulatory Process 

This course is intended to introduce students to the legislative, regulatory, and judicial processes and how science is used during these activities. The course starts by describing the legislative process including the role of the Library of Congress in providing scientific advice to both the House of Representatives and the US Senate. Subsequently, the application of Administrative Procedures Act and other laws in promulgation of regulation is addressed including the role of the National Academy of Sciences in providing scientific advice to the executive branch. The course also includes a brief description of how courts decide scientific issues. An important part of the course is how relevant laws including the Information Quality Act and Freedom of Information Act are used.
2 credits, L. Jaeger

MICB 702: Public Health Regulatory Science

This course begins with the fundamental treatment of the unique nature of regulatory science -- how science is used in regulatory, legislative, executive, and judicial decisions and affairs and scientific and other (e.g. communication) competencies that are needed to respond to regulatory requirements. This includes an overview of the development of regulation as a living product of public administration and public policy. The course covers methodological regulatory science beginning with health risk assessment, and an overview of regulatory economics. With this as a foundation, the course provides a concentrated treatment of specific regulatory public health topics ranging from regulatory atmospheric sciences to regulatory toxicology and regulatory pharmacology.
2 credits, A. Moghissi

MICB 703: Advanced Regulatory Science and Public Health Course 

This course is an in depth treatment of a focused set of public health regulatory science issues that are introduced in MICB-702. (MICB 702 is not a pre-requisite, however.) The course begins with specific coverage of methodologies that are the substance of (A) health risk assessment and (B) risk benefit analysis. Based on a working familiarization with methodology, the course turns to a concentrated treatment of specific regulatory public health topics, including (1) regulatory toxicology, (2) regulatory pharmacology, (3) medical device regulation, (4) regulatory atmospheric sciences (as pertains to public health), and (5) regulatory nutritional sciences.
2 credits,  A. Moghissi

MICB 705: Science Diplomacy and World Health 

This course will allow students to establish 1) a fundamental understanding of science policy and diplomacy by learning key components such as principles of bioethics, technology transfers, science literacy, funding merits for basic and applied research, and biomedical ethics; 2) an understanding of the practical development and application of science policy by examining how science policies are drafted and implemented by Congress 3) a knowledge of recent emerging diseases and other public health concerns including radiation effects as will be presented by the instructor or guest speakers who are leading experts in the fields. A thorough understanding of science is the crucial component for policy makers and those who are involved in preparing policies. By the end of the course, students will be able to draft policies for science diplomacy in order to address current emerging infectious diseases as well as other global health concerns.
2 credits, T. Steen

MICB 708: Immunogenetics 

This course will consist of a lecture series composed of the following themes: distinction of self and non-self and why is it important, origins of innate and adaptive immunity, Generation of diversity for T-cell and B-cell receptors and for major histocompatibility (HLA) systems. The genetic and molecular basis of disease associations with HLA. Understanding why HLA is the most critical locus for so many complex diseases, the genetics of natural killer cell receptors, phases in cancer: elimination, equilibrium and escaper, cancer genome project, diver and passenger mutations, immunotherapy in cancer; and the microbiome in immunity and cancer.
2 credits, C. O Huigin

MICB 800 & MICB 801: Seminar - Global Infectious Diseases

This graduate seminar is a unique combination of presentations by experts in biomedical sciences, policy, and social science that are united by key topics in global infectious diseases. The purpose of this seminar series is to provide a venue for the discussion of interdisciplinary research and development that acknowledges how the world has become a global system for the propagation of infectious disease. 
2 credits, Staff

MICB 842: Global Infectious Disease Research Seminar (CURRENTLY NOT OFFERED)

This seminar will primarily feature presentations by Global Infectious Disease students on the progress of their thesis research. Students in the pre-thesis portion of their training will give presentations on their internship work. In addition, several guest speakers both from within and outside the University will be invited to present on leading topics in global infectious disease research.
1 credit, J. Casey

MICB 852 & MICB 853: Seminar - Microbiology & Immunology

Individual topics will vary depending on the expertise of each speaker. PhD students will attend all lectures and give seminar presentations covering progress of their work. 
1 credit, R. Calderone

MICB 900: Tutorial Internship

0-3 credits, Staff


Printable Course Catalog